Time:O(n\log n) Space:O(n) C++ struct T { int pro; int cap; T(int pro, int cap) : pro(pro), cap(cap) {} }; class Solution { public: int findMaximizedCapital(int k, int W, vector<int>& Profits, vector<int>& Capital) { auto compareC = [](const T& a, const T& b) { return a.cap > b.cap; }; auto compareP = [](const T& a, const T& b) { return a.pro < b.pro; }; priority_queue<T, vector<T>, decltype(compareC)> minHeap(compareC); priority_queue<T, vector<T>, decltype(compareP)> maxHeap(compareP); for (int i = 0; i < Capital.size(); ++i) minHeap.emplace(Profits[i], Capital[i]); while (k--) { while (!minHeap.empty() && minHeap.top().cap <= W) maxHeap.push(minHeap.top()), minHeap.pop(); if (maxHeap.empty()) break; W += maxHeap.top().pro, maxHeap.pop(); } return W; } }; JAVA class T { public int pro; public int cap; public T(int pro, int cap) { this.pro = pro; this.cap = cap; } } class Solution { public int findMaximizedCapital(int k, int W, int[] Profits, int[] Capital) { Queue<T> minHeap = new PriorityQueue<>((a, b) -> a.cap - b.cap); Queue<T> maxHeap = new PriorityQueue<>((a, b) -> b.pro - a.pro); for (int i = 0; i < Capital.length; ++i) minHeap.offer(new T(Profits[i], Capital[i])); while (k-- > 0) { while (!minHeap.isEmpty() && minHeap.peek().cap <= W) maxHeap.offer(minHeap.poll()); if (maxHeap.isEmpty()) break; W += maxHeap.poll().pro; } return W; } }